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Numerical study of the SK spin glass in a transverse field 
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Abstract. The spin glass phase of the SK model ln B lransverse field is lnvcstigated by 
means of numerical soIuuons of the mean field equations that are obtained by the pair 
approximation. There exist many solutions that correspond IO pure states. This isconsistent 
with the concept of replica symmetry brcalung. The sol~lions are shown 10 be marginally 
stable, as in the case of the classical SK model. From these results, the nature of the spin- 
glass phase may be considered as unchanged by the piesence of a transverse field. 

1. Inboduction 

In recent years a considerable number of investigations on quantum spin-glass models 
has appeared. In particular, much attention has been paid to the Sherrington-Kirk- 
patrick (SK) model with a transverse field. 

Thenatureofthespin-glassphaseforthes~modelwithouta transverse fieldisrather 
well understood [l]. In this model, Parisi’s replica symmetry breaking solution [2,3] is 
believed to be exact. The order parameter becomes a function and the physical meaning 
of the order parameter function has been clarified. In the spin-glass phase, there is an 
infinite number of states separated by infinitely high barriers in the free energy. Each of 
these states is called a pure state. The order parameter function is expressed using the 
overlaps of pure states. 

Thouless, Anderson and Palmer (TAP) developed a mean field theory for the SK 
model without relying on the replica technique [4]. It often happens that there is no 
numerical solution of the TAP equations for finite systems [5].  Nemoto and Takayama [6] 
discovered a clever method to find ‘solutions’ of the equations. They sought ‘solutions’ 
whichminimize thenormofthegradientofthefreeenergy, IVFl.The‘solutions’become 
real solutions in the thermodynamic limit. All solutions of the equations are shown to 
bemarginally stable. Thereis anumber of solutionsfor theTAPequations, which increase 
exponentially with the number of sites [7l. All the features of solutions thus obtained 
are consistent with Parisi’s scheme [7]. 

The question of how the above features of the spin-glass phase are influenced by the 
presence of a transverse field is interesting. Some earlier works suggested the existence 
of the replica symmetric spin glass phase for the SK model with a transverse field [9, lo]. 
However, more recent investigations seem to deny this possibility. The stability of the 
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replica symmetric spin-glass phase was investigated numerically by Buttner and Usadel 
[ 111. They showed that the stability line of the replica symmetry at non-zero temperature 
is the same as the transition line by investigating numerically the smallest eigenvalue of 
the Hessian matrix near the transition line. As a first step to the true solutions of the low 
temperature phase, first-stage replica symmetry breaking solutions have been obtained 
for the model [12, 131. The replica symmetry breaking has also been studied by the 
Monte Carlo simulation by Lai and Goldschmidt [14]. They concluded that the overlap 
probability distribution P(q) is similar to that for the classical case. Both numerical 
calculations are rather complicated due to the existence of quantum variables and it 
seems difficult to obtain full solutions. Furthermore it would be interesting to study 
other features of the spin glass phase, e.g. marginal stability and ultrametricity. Hence 
it would be worthwhile to make some approximate calculations. 

In this paper, the nature of the spin-glass phase of the SK model in a transverse field 
is investigated by means of numerical solutions of the mean field equations that are 
obtained by the pair approximation. There exist many solutions, this being consistent 
with the replicasymmetry breaking. Moreover, thesolutionsareshown to be marginally 
stable. From these results, it may be concluded that the effects of a transverse field on 
the nature of the spin-glass phase are qualitatively rather similar to the effects of 
temperature. 

2. Mean field equations by the pair approximation 

The pair approximation gives the TAP equations when it is applied to the SK model [15]. 
When there are quantum variables, account is only taken of the quantum effects within 
two-spin clusters in the pair approximation. Although the treatment is not sufficient 
even in the case of infinite-range quantum spin-glass systems, two-spin clusters seem to 
be important because the exchange couplingf, is a Gaussian random variable with zero 
mean and variance 1,”. 

The Hamiltonian of the SK model in a transverse field is given by 

y e = -  
(il) 

By using the pair approximation, mean field equations can be obtained which reduce to 
the TAP equations when the transverse field is absent. The derivation of the equations 
has been reported [16] and are reproduced here. The equations are obtained by the 
extremum conditions of the free energy with respect to the magnetization and are given 
by 

i i 

where hi and hi are effective fields in the one-body Hamiltonian and the pair 



The SK spin glars in a transverse field 7041 

Hamiltonian respectively. They are expressed by using the magnetization mi and the 
transverse field r. The onebody effective field is related to the magnetization as 

mi = (h i /Ei )  tanh(pEj) (3)  

E, = (h? + rZ)ln. (4) 

hi(') = -mi ( 5 )  

where 

Expressions for h; are given by 

and 

~ , h ; ( ~ )  = - TZ(3hihj /2EjE$ tanh PE, tanh' PEi + r4(hi/E4E7) 
x tanhZ PEi tanh PE, - PrZ[(h,h:/EjE:)(l - $ tanh' PE,) 

- (hf/EfE:) tanhPE, tanh PE,)] (1 - t a d Z  BEi) 
+ P2(h!h?/E7ET) tanh /3Ei(l - tanh' j3Ei)(1 - tanhZ BE,) 

- rZ(hi(rZ - 3h;)/2EjE;) tanhpE, + r 4 ( h i / 2 E ! E 3  tanhpE, 

+ r4[h,/2(hf -hf)'][(tanh &Ei/EiEj) + (tanPE,/E:) 

- (2  tanh PE,/ETE,)] - r4[h,/Z(hf - /I;)][( - 3 tanh PE,/E:Ef)  

+ (tanh PE$??) + (2  tanh PE,/ETE?) - (tanh/3Ei/E;'E,)] 

' 

- pr*(h,/z~q)(i - tmhZ PE,)  - p r 4 [ h i / 2 ( h ;  - h ; ) ~ j ]  

X (1 - tanhZ PE,). (6) 
Here xi is the susceptibility for the one-body effective field and is given by 

(7) 
ami tanhPEi hz Ph? 

Ei Ef E? 
- tanh PEi + - (1 - tanh' PE,).  r = - =  ' ahi 

The expression for h;(') is the same as the expression for the classical model and this is 
a problem in the pair approximation. The reaction field which is given by -h;(z) contains 
quantum effects. 

3. Numerical solutions of the mean field equations 

The nature of the spin glass phase is now discussed by solving equations (2) numerically. 
These equations do not always have a solution [ 5 ] .  The method considered by Nemoto 
and Takayama [6] is adopted. In this method, quasisolutions which minimize lVFl are 
picked up. Solutions with vanishing lVFl are real solutions. In the thermodynamic limit, 
IVq is expected to vanish and quasisolutions become real solutions. 

Numerical calculations are now described more closely. Taking N = 40 and 80 as the 
system size, calculations are performed for I5 samples of random bond configurations. 
Several solutions are obtained for each sample. First, 100 initial conditions are tried for 
each sample at T =  r = 0 and many solutions are obtained. This is easily performed 
numerically because the reaction field is not necessary at T = r = 0. In fact, the number 
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Table 1. Number ofsolutions. ?be= numbers are sums of 15 samples. 

r 
N 0.0 0.2 0.4 0.6 0.8 1.0 

40 173 153 91 53 29 17 
80 82 85 65 51 36 7.3 

of initial conditions does not seem to be enough for N = 80 and consequently important 
solutions with large statistical weight are missing, as will be seen below. The minimum 
energyof solutionsisdenotedby E,,foreachsample. Becausesolutionswith negligible 
statistical weight may be abandoned to save computational time, solutions are retained 
for which the energy satisfies the following condition: 

< exp[-S.O(E - E&)]. 

Here it is assumed that a solution with negligible statistical weight remains negligible 
when parameters Tand rvary. Considering the numerical results, this assumption holds 
true in most cases we have examined explicitly. Next, the temperature is raised to 0.2. 
Solutions are updated by iterations to minimize IVFI. Convergence is considered to be 
accomplished if the condition 

Im!"+u - m ! " ) l  4 0 - 5  (9) 
is satisfied for all sites i. For a solution which satisfies the condition (9), the smallest 
eigenvalue of the Hessian matrix composed by the element a*F/am,am, is calculated. 
When the eigenvalue is positive, the solution is accepted and when it is negative, further 
iterations are made to obtain an acceptable solution. In addition, when lVFl becomes 
smaller than about W4, Fitself is minimized to seek a real solution. These procedures 
are repeated to raise the value of r by steps of 0.1. 

Some numerical results to investigate the nature of the spin glass phase within the 
pair approximation are now shown. First, the number of solutions is shown in table 1. 
The number is the sum over 15 samples. Hereafter all the results are for T = 0.2. 
Although the number for r = 0.0 is smaller than the number for r = 0.2 in the case of 
N = 80, this may be an artefact of the numerical method. Confluence of some solutions 
can occur in the course of the iterations to ensure that the smallest eigenvalue of the 
Hessian matrix remains positive. Most solutions (c., 95%) are with non-zero (VFI 
for r = 0. The ratio of solutions with non-zero IVF/ decreases as the transverse field 
increases. This ratio is about 40% for r = 0.6. For r 2 1.0, most solutions are at the 
minimum of the free energy. 

The smallest eigenvalue of the Hessian matrix is shown in figure 1. Because the 
smallest eigenvalue is identically zero for non-zero minimum IVq, account is only taken 
of solutions which minimize the free energy. The value in the figure is obtained by first 
averaging within a sample and then taking an average over samples. Since the N-*D 
scaling is considered to hold good for the classical case, the same scaling is assumed to 
hold for the quantum case. The broken lines are only a guide for the eye. The scaling 
seems to be good even for the quantum case and this ensures the marginal stability of 
the solutions. 
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Figure 1. The smallest eigenvalues of the Hessian 
matrix at T = 0 . 2  e f o r r  = O.O;mforT = 0.3;O 
for r = 0.6; for r = 0.9. To obtain the eig- 
envalues,account isonlytakenofsolutionswhich 
minimize the free energy. The values areobtained 
by 6rst averagingwithin a sample andthen taking 
averagesover samples. The broken lines are only 
a guide for the eye and represent the N-zD scaling 
which is considered to be good for the classical 
CaSe.  

To see that quasisolutions with non-zero minimum lVFl become real solutions, lVFl 
must be shown to vanish in the thermodynamic limit. Unfortunately the size of the 
systemexaminedseems to be too smalltoverifythisstatement. Thereforequasisolutions 
are simply assumed to become real solutions in the thermodynamic limit. 

Consider next the spin glass order parameters. In figure 2, the Edwards-Anderson 
order parameter and the averaged order parameter defined by 

and 

respectively are shown. In this expression, the overlap of magnetization between two 
pure states 

and the statistical weight of a pure state 

are used. Although the size dependence of the results is rather weak, the value for N = 
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SO seems to be a little larger than the value for N = 40 especially for 0.5 C r d 1.2. The 
order parameter function q ( x )  is obtained by using the formula 

x(q) = (2 p a p b e ( 4  - * o b ) )  J ’ (14) 
ab 

In figure 3, q ( x )  is shown for r = 0.1, 0.5 and 1.0 together with the first-step replica 
symmetry breaking results [13]. The full lines and the dotted lines represent the results 
for N = 40 and SO, respectively, while the results by the replica method are indicated by 
the broken lines. The curve for N = SO is rather steep. This may be due to the fact that 
statistically important solutions are missing in this case as mentioned above. The curves 
for r = 1.0 in the pair approximation are considerably below the curve of the replica 
method. Whether this is due mainly to the inadequacy of the approximation or to the 
size dependence mentioned above cannot be concluded definitely. 
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Figure 3. The order parameter function q ( x )  for 
I- = 0.1,O.S and 1.0 at T= 0.2areshown in (a), 
(b)  and (c) respectively. The full lines and the 
dotted lines represent results for N = 40 and 80, 
mpedively, while the results for the first-step 
replica symmetry breaking [IO] are shown by the 
broken lines. 

These numerical results suggest that the qualitative nature of the spin-glass phase is 
similar to that of the classical case, Solutions join together by the effect of quantum 
tunnelling represented by the transverse field. This situation is rather similar to the 
confluence of solutions by thermal effects in the classical SK model. Quantum fluctuations 
are not expected to be important qualitatively for the critical behaviour at non-zero 
temperaturein thismodel[17]. Thesame kindofeffectiveHamiltonianasin theclassical 
case would then describe the system qualitatively near the second order transition line. 
In particular, the nature of the replica symmetry breaking is expected to be the same as 
the classical case near the second-order transition h e  at non-zero temperature. 

Quantum effects are most essential at zero temperature. The ground state of the 
model is described by a classical king system with an extra dimension [17]. In this case, 
equivalent classical king spin glass systems with r playing the role of temperature are 
stacked infinitely along the extra direction with ferromagnetic interactions between 
layers. Although such ferromagnetic interactions are not expected to change the nature 
of the spin-glass phase, it is a problem that remains. 
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In order to check ultrametricity, the numerical solutions have been analysed. Unfor- 
tunately the number of pure states as well as the size of the system are too small to derive 
a definite conclusion. 

To summarize, the nature of the spin-glass phase for the SK model with a transverse 
field has been investigated within the pair approximation. There are many pure states 
as in the classical case. Marginal stability of solutions persists also for the quantum 
system. Consequently, the same qualitative picture exists of the spin-glass phase for the 
model as for the classical SK model. The effects of a transverse field are rather similar to 
the effects of the temperature in the classical model. 
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